Abstract

The study of electrostatic precipitators (ESP) is of great importance in powder technology. Different physical and chemical processes occur during its operation. The objective of this investigation is to analyze and observe electrical phenomena using mathematical models such as Poisson's equation and the charge conservation equation. To carry out the simulation two flat plates and seven corona wires are geometrically arranged based on an ESP prototype. The general form of partial differential equations mentioned along with the boundary conditions was written in software and associated with the different parts of the geometry. For example, the electric field onset is calculated by Peak's law and set as one of the boundary conditions for the corona wires. Defining the space charge density distribution is an essential part because the next processes inside of ESP depend on this parameter. A specific method that splits the space charge density is used to solve these PDEs. Besides, a review of the concepts of the particle charging process, particle kinetics, and particle collection is introduced. The results obtained from the simulation such as the electric potential, electric field, and space charge density, agree with those proposed in some investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.