Abstract

The formation of liposomes with low polydispersity index by application of ultrasounds was investigated considering methodology specifications such as sonication time and sonication power. Phosphatidylcholine (PC) liposomes were formed by the evaporation–hydration method. The vesicles were sonicated using several sonication conditions. The liposomes were then characterized by dynamic light scattering (DLS) and freeze-fracture electron microscopy (FFEM). Correlation functions from DLS were treated by cumulants method and GENDIST to obtain the mean radius and polydispersity index. These calculations allowed to fix an optimal sonication time (3000 s) and a useful interval of ultrasound power between 39 and 91 W. DLS and FFEM results confirmed that vesicle size, lamellarity and the polydispersity index decreased with the increase of sonication power. Thus, we propose a systematic method to form liposomes in which the physical characteristics of the vesicles may be controlled as a function of sonication time and power.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call