Abstract

Photovoltaic properties of narrow-bandgap Cu2SnS3 (CTS) are studied for the first time by employing a superstrate solar cell structure of fluorine-doped tin oxide (FTO) glass/TiO2/In2S3/CTS/Mo. The structural, optical, and electronic characteristics of the CTS make it great potential as bottom cell absorber material for low-cost thin film tandem solar cell application. Furthermore, by inserting a thin low temperature deposited In2S3 layer between the In2S3 buffer layer and the CTS absorber layer, an enhancement in the performance of the solar cell can be achieved, leading to about 75% improvement (η=1.92%) over the unmodified device (η=1.10%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.