Abstract

Abstract Pulse hydraulic fracturing is a promising stimulation technology to enhance the effectively permeability of coal seams. The fundamental of pulse hydraulic fracturing is that fracturing fluids with a certain frequency are injected into coal, resulting in the rupture of coal and forming a well-distributed fracture network due to the pulse loading. Better effects of gas extraction using pulse hydraulic fracturing had been gotten compared with that of hydraulic fracturing. Accordingly, how to apply pulse hydraulic fracturing technology to improve the fracturing effect of tight and shale reservoirs is a question worth thinking about, although this is very challenging due to the totally different downhole operating conditions. In this paper, experimental apparatus for fatigue damage of quasi-triaxial rock under alternating loads was established. The maximum injection pressure is 50MPa, while the pulse pressure amplitude is greater than 5MPa, and the pulse frequency is adjustable from 0 to 50Hz. Rock failure experiments under pulsating load were carried out and the effects of different hydraulic pulse parameters and rock properties on rock damage were studied. Experimental results show that hydraulic pulse has different effects on rock compressive strength and fracture pressure of different properties. With the increase of hydraulic pulse frequency, the influence on rock compressive strength increases firstly and then decreases. With the increase of pulse pressure amplitude, the influence on rock strength increases. With the increase of hydraulic pulse processing time, the influence on rock fracture pressure increases firstly and then tends to stabilize. Hydraulic pulse has the greatest influence on the compressive strength and fracture pressure of He 8 reservoir, followed by Chang 8 and Chang 6 reservoir of Changqing Oilfield in China. Based on the experimental results, hydraulic pulse frequency is preferred to be about 18-20Hz, accordingly, a downhole hydraulic pulse generator is designed and manufactured. The indoor test results show that the generator performance meets the design requirements. Field tests of pulse hydraulic fracturing were carried out in 3 wells in Changqing tight oil reservoir. Encouraging results were obtained, the average construction pressure was reduced obviously and average daily production per well increased significantly compared to adjacent wells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.