Abstract

Widespread saline soils in Northwest China pose a serious threat to the region's ability to use infrastructure safely because they are prone to soil structure damage when subjected to external environmental fluctuations, which in turn affects the stability of the foundations for buildings. The non-destructive approach of measuring resistivity can be used to swiftly reflect the subsoil body's state and make assumptions about its safety. However, the electrical resistivity of the underground soil body can be used to quickly identify unstable areas because the resistivity is influenced by the water content, salt content, and structural characteristics of the soil body. To do this, it is necessary to understand the coupling relationship between various factors. In this study, we first constructed samples with various water, salt, and soil structure characteristics, and then used indoor tests, such as soil resistivity measurement and thermogravimetric analysis, to analyze the multiple factors affecting the resistivity characteristics of the soil. The relationship between soil resistivity and actual saline soil diseases in Northwest China was then further discussed in conjunction with the results of the indoor tests and analyses. subsequently, the resistivity and soil properties have been measured in the field at specific locations in Northwest China where railway roadbeds are diseased. The study's findings can theoretically support a deeper comprehension of the law and mechanism of soil resistivity change, as well as provide assistance for building infrastructure in Northwest China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call