Abstract

AbstractThe enaminones 1b,d,f react with 4‐phenyl‐3‐methyl‐5‐pyrazoleamine 3a to yield the pyrazole derivatives 4a‐c that cyclised readily on reflux in pyridine solution in presence of hydrochloric acid to yield the pyrazolo[1,5‐a]pyrimidines 5a‐c. Similarly 3(5)‐amino‐1H‐triazole (3b) reacted with 1b,d,f to yield the triazolo[1,5‐a]pyrimidines 5d‐f. In contrast attempted condensation of the 5‐tetrazoloamine (3c) with 1a,d,e resulted in its trimerisation and only triaroylbenzene 8a,d,e was isolated. The reaction of 1a,b,d with anthranilonitrile 9a and the reaction of 1a‐c with the 2‐aminocyclohexene thiophene‐3‐nitrile 10a afforded the cis enaminones 11a‐c and 12a‐c. Similarly, reaction of 1a‐c with the methylanthranilate 9b and reaction of 1b,e with ethyl 2‐aminocyclohexene thiophene‐3‐carboxylate 10b afforded the cis enaminones 11d‐f and 12d,e respectively. Attempted cyclization of 11a‐c into quinoline failed. Successful cyclization of 11d into the quinolinone 13 could be affected, on heating for five minutes in a domestic microwave oven at full power. The reaction of 1a‐c,f with piperidine afforded the trans enaminones 14a‐d. Similarly, trans 14e was formed from the reaction of 1b with morpholine. The coupling reaction of 1b with excess of benzene diazonium chloride afforded the formazane 16. The enaminone 2 reacted with heterocyclic amines to yield the pyridones 17,18.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.