Abstract

The permeability of tritiated water (THO) across simple and layer-type composite membranes of collodion containing different amounts of polystyrenesulfonic acid has been measured and corrected for the effects of aqueous stationary layers present at the membrane-solution interfaces. It was found that the water permeabilities in the two opposite directions across the composite membranes were different, whereas they were the same across simple membranes. The theoretical permeability value for the composite membrane (formed by putting one simple membrane on top of another simple membrane of increasing charge density and gently pressing them together), calculated from the values due to simple membranes, was found to be always greater than the two measured values. It was shown that the aqueous layers trapped between membranes were not responsible for the low measured values. The factor causing this was ascribed to the mechanism which produced rectification of water flow in the composite membranes. Establishment of the THO concentration profile in the layered membranes showed that accumulation and depletion of THO in the membrane phase when the THO was flowing from the high charge density side to the low charge density side and vice versa, respectively, were responsible for the unequal flows observed across the composite membrane in the two directions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call