Abstract

The reconstituted glycolytic system described previously (Scopes, 1973) was used to simulate post-mortem glycolytic metabolism in muscle. The effects of the following factors have been investigated: ATPase (adenosine triphosphatase) amount, AMP deaminase amount, percentage of the phosphorylase in the a form and the effect of diluting the glycolytic enzyme complex as a whole. It was confirmed that the rate of metabolism was solely dependent on the amount of ATPase present and that various concentrations of the glycolytic enzymes had no effect over a wide range encompassing the variation found in anatomically different muscles. The extent of metabolism, represented by the value of the ;ultimate' pH, depended markedly on the amount of phosphorylase in the a form; as little as 1% of the a form resulted in a considerably lower pH than in its absence. To a lesser extent the amount of AMP deaminase also affected the ultimate pH, but this was probably only significant for comparisons of genetically distinct muscles with widely differing amounts of AMP deaminase. The reconstituted system behaved almost identically with regard to post-mortem glycolytic metabolism compared with intact muscle tissue. It is concluded that the controlling effectors found with the reconstituted system apply to intact muscle also.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call