Abstract

In this study, we report the synthesis, characterization, and reactions of Cu(I) complexes of the general form Cu(L)(LigH2) (LigH2 = xanthene-based heterodinucleating ligand (E)-3-(((5-(bis(pyridin-2-ylmethyl)amino)-2,7-di-tert-butyl-9,9-dimethyl-9H-xanthen-4-yl)imino)methyl)benzene-1,2-diol); L = PMe3, PPh3, CN(2,6-Me2C6H3)). New complexes [Cu(PMe3)(LigH2)] and [CuCN(2,6-Me2C6H3)(LigH2)] were synthesized by treating [Cu(LigH2)](PF6) with trimethylphosphine and 2,6-dimethylphenyl isocyanide, respectively. These complexes were characterized by multinuclear NMR spectroscopy, IR spectroscopy, high-resolution mass spectrometry (HRMS), and X-ray crystallography. In contrast, attempted reactions of [Cu(LigH2)](PF6) with cyanide or styrene failed to produce isolable crystalline products. Next, the reactivity of these and previously synthesized Cu(I) phosphine and isocyanide complexes with molybdate was interrogated. IR (for isocyanide) and 31P NMR (for PPh3/PMe3) spectroscopy demonstrates the lack of oxidation reactivity. We also describe herein the first example of a structurally characterized multinuclear complex combining both Mo(VI) and Cu(I) metal ions within the same system. The heterobimetallic tetranuclear complex [Cu2Mo2O4(μ2-O)(Lig)2]·HOSiPh3 was obtained by the reaction of the silylated Mo(VI) precursor (Et4N)(MoO3(OSiPh3)) with LigH2, followed by the addition of [Cu(NCMe)4](PF6). This complex was characterized by NMR spectroscopy, high-resolution mass spectrometry, and X-ray crystallography.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call