Abstract

The reactions of the antitumor antibiotic carzinophillin (CZ) with native DNAs and synthetic polynucleotides have been examined by an ethidium fluorescence assay. CZ rapidly produces covalent linkage of the complementary strands of a variety of DNAs without activation. This process is accompanied by extensive alkylation, as detected by reduced fluorescence due to destruction of potential intercalation sites for ethidium. These processes which occur without loss of purine or pyrimidine bases show a preference for bonding to guanine groups (but not at the N-7 position). Examination of the reversibility of the cross-links suggests they involve one 'permanent' link to guanine and a second weaker linkage, possibly to a cytosine residue. Both cross-linking and alkylation show strong pH dependence and are favored at lower pH, suggesting that reactive sites on the antibiotic are basic. The addition of intercalating agents to DNA before treatment with CZ inhibits the cross-linking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call