Abstract

This work aimed at the resolution of the multi-component electric potential changes induced by single-turnover flash illumination of Photosystem-I-enriched subchloroplast vesicles. If supplemented with ferredoxin and under carefully adjusted redox poising, these vesicles show a pronounced slow-rising and -decaying electric potential component, as monitored by endogenous and exogenous field-sensitive probes, carotenoids and oxonol VI, respectively. The fast and slow potential components can be easily discriminated without the need for computer-assisted deconvolution after selective presaturation of the slow component by preillumination or a transmembrane ΔpH, after selective suppression of the slow component by low valinomycin or uncoupler concentrations or in the absence of ferredoxin. The slow electric potential component, as compared to the fast one, is relatively sensitive to low concentrations of ionophores and uncouplers, detergent, ageing and lower temperatures (4–12°C), is associated with electrogenic proton displacements and is interpreted to respond to a field that is more located on the membrane-bulk interface. Temperature effects show transition temperatures around 20°C for both the rise and decay of the slow potential component. The results provide further evidence that the carotenoids and oxonol VI sense the same (slow) electric field, but may be differently located in the thylakoid membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call