Abstract

Among the factors associated with the risk of colorectal cancer and other large bowel diseases are gender, with women having lower incidence than men, and free-radical mediated oxidation. Dietary fiber has been attributed a protective role in human gastro-intestinal health. The main aim of this study was to determine the degree of association between dietary fiber consumption and fecal free-radical production in healthy rural and urban Guatemalan women, moreover, to look for associations between gender and fecal reactive oxidative species (ROS) basal production, a marker of in situ colonic free-radical-based oxidation. For this purpose, we assessed the dietary fiber consumption, using two 24-h recalls, in urban and rural females, and compared the baseline data, i.e., of iron-supplement-free periods, in three previous studies. Two of these trials quantified the fecal ROS generation as total hydroxylated products resulting from free-radical attack on salicylic acid along with residual non-heme iron content in stool samples from 27 Fe-replete men. The third study assessed the same variables in 20 rural and 20 urban women, all consuming their respective habitual diets. The average fiber consumption for females was more than double in the rural group than in the urban population. As for the average ROS responses, a 2.5-fold difference was observed between men and women, with men having the higher concentrations of total hydroxylated products. This difference was sex-linked, unaffected by statistically significant differences in dietary fiber intake, nor by different concentrations of residual fecal non-heme iron between rural and urban women. The difference in background ROS production between men and women suggests a gender-related influence on intraintestinal oxidation that may protect women from harmful effects of dietary oxidants, such as iron.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.