Abstract
The photoluminescence properties of Yb3+ sensitized Er3+ doped BaLa2(MoO4)4, SrLa2(MoO4)4 and CaLa2(MoO4)4 phosphors synthesized via hydrothermal method are investigated upon 980 nm and 380 nm light excitations. The phase, purity, and morphology of the samples are characterized by X-ray diffraction, Fourier transform infrared spectroscopy and Field emission scanning electron microscope. Among these three phosphors, the strongest emission intensity is seen in BaLa2(MoO4)4: Er3+/Yb3+ through both the 980 nm and 380 nm light excitations and is explained by the lifetime measurement of 4S3/2 level of Er3+ ion. Temperature sensing measurements were performed by using the fluorescence intensity ratio (FIR) of green emission bands originated from the two thermally coupled 2H11/2 → 4I15/2 and 4S3//2 → 4I15/2 transitions of Er3+ and maximum temperature sensitivity of 1.05% K−1 at 305 K is found for BLa2(MoO4)4: Er3+/Yb3+ sample. Moreover, the laser induced heating is measured in the samples and the maximum temperature of the sample particles is calculated as 422 K at 76 W/cm2 in BaLa2(MoO4)4: Er3+/Yb3+, pointing out large amount of heat generation in such phosphors. The BaLa2(MoO4)4: Er3+/Yb3+ also exhibits higher photothermal conversion efficiency of 46.7%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.