Abstract
The relative rate of turnover of individual membrane proteins and glycoproteins in exponentially growing and contact-inhibited MK 2 cells was investigated. Plasma membranes were isolated from cells that had been sequentially labelled with 14C and 3H isotopes of leucine and glucosamine. The membranes were then solubilized in sodium dodecylsulfate and their polypeptides separated by acrylamide gel electrophoresis. The 3H/ 14C ratios of the individual polypeptides reflected their relative rates of turnover. The proteins and glycoproteins of the exponentially growing cells exhibited markedly heterogeneous rates of turnover. In contrast, polypeptides in membranes of contact-inhibited cells exhibited a lesser degree of heterogeneity of turnover. In both exponential and contacted cell membranes a glycoprotein with a high apparent molecular weight exhibited the fastest rate of turnover.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.