Abstract

AbstractThe synthesis of bisphenol A–glycidyl methacrylate (BIS–GMA), the resin component in most dental composite restorative materials, catalyzed by different tertiary amine accelerators such as N,N′‐dimethyl‐p‐toluidine (DMPT), N,N′‐dimethylamino phenethyl alcohol (DMAPEA), and N,N′‐dimethylamino ethyl methacrylate (DMAEMA) is reported in this work. The effect of varying concentrations of accelerators and the reaction conditions of the synthesis as a function of time is studied in detail. The kinetics of the reaction between epoxide and carboxyl group during the formation of BIS–GMA is monitored using infrared (IR) and chemical techniques. The reaction is found to follow first‐order and zero‐order kinetics with respect to epoxide and acid, respectively. The degree of epoxide and acid conversion has been calculated as a function of time. The percentages of various isomers, formed under different reaction conditions have been reported. Characterization procedures for BIS–GMA have been developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.