Abstract

TMPyP4 (Mesotetra(N-methyl-4-pyridyl)porphine) is known to have a high affinity for G-quadruplex DNA. However, there is still some controversy over the exact site(s) and mode(s) of TMPyP4 binding to G-quadruplex DNA. We examined TMPyP4 interactions with seven G-quadruplex forming oligonucleotides. The parent oligonucleotide is a 27-mer with a wild-type (WT) G-rich sequence of the Bcl-2 P1 promoter mid-region (5′-d(CGG GCG CGG GAG GAA GGG GGC GGG AGC-3′)). This sequence folds into at least three unique loop isomer quadruplexes. The two mutant oligonucleotides used in this study are shorter (23-mer) sequences in which nonquadruplex core bases were eliminated and two different (-G-G-) → (-T-T-) substitutions were made to restrict the folding complexity. The four additional mutant oligonucleotides were labeled by substituting a 2-aminopurine (2-AP) base for an A or G in either the first three-base lateral loop or the second five- or seven-base lateral loop (depending on the G→T mutation positions). Spectroscopic and microcalorimetric studies indicate that four molecules of TMPyP4 can be bound to a single G-quadruplex. Binding of the first two moles of TMPyP4 appears to occur by an end or exterior mode (K ≈ 1 × 107 M−1), whereas binding of the third and fourth moles of TMPyP4 appears to occur by a weaker, intercalative binding mode (K ≈ 1 × 105 M−1). As the mid-loop size decreases from seven to five bases, end binding occurs with significantly increased affinity. 2-AP-labeled Bcl-2 promoter region quadruplexes show increased fluorescence of the 2-AP base on addition of TMPyP4. The change in fluorescence for 2-AP bases in the second half of the TMPyP4 titration lends support to our previous speculation regarding the intercalative nature of the weaker binding mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.