Abstract

The second-harmonic generation (SHG) coefficient for cubical quantum dots (CQDs) with the applied electric field is theoretically investigated. Using the compact density-matrix approach and the iterative method, we get the analytical expression of the SHG coefficient. And the numerical calculations for the typical GaAs/AlAs CQDs are presented. The results show that the SHG coefficient can reach the magnitude of 10 −5 m/V, about two orders higher than that in spherical quantum dot system. More importantly, the SHG coefficient is not a monotonic function of the length L of CQDs as well as the applied field F. If we select suitable values of F and L, we will get a higher value of the SHG coefficient. In addition, the relaxation rate also affects the SHG coefficient obviously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call