Abstract

Objective Provide a reference to elucidate the mechanism of circRNAs regulating osteoarthritis (OA) and the clinical treatment. Methods Herein, articles about circRNAs (hsa-circ) and osteoarthritis in the recent 5 years have been reviewed and the differential expression and regulatory effect of circRNAs in OA deduced. Based on these conclusions and Protein-Protein Interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the acquired circRNAs, the potential functions and interactions of circRNAs in OA and the involved signaling pathways are discussed. Results A total of 33 studies meeting the inclusion criteria were included in this study, and 27 circRNAs were upregulated and 8 circRNAs were downregulated in OA. A total of 31 circRNAs were finally included in the PPI, GO, and KEGG analyses. From PPI, 12 map nodes and 7 map edges were interrelated. VWF had the biggest node and edge size. From GO, VWF showed a majority of the functions. From KEGG, circRNAs are enriched in PI3K/AKT, human papillomavirus infection (HPI), and focal adhesion (FA) pathways, and VWF was involved in major pathways. Conclusion We found that most articles about circRNAs regulating OA in the recent 5 years focused on the mechanism, especially the absorption effect of circ-miRNA as sponges in the recent 2 years, while most of the articles about their functions addressed ECM and PI3K, AKT, and mTOR signaling pathways. Future studies might focus on the functions of circRNAs, and circRNA VWF, with preferable functions, interactions, and involvement, can be used as a biological indicator to detect OA in clinical practice.

Highlights

  • Osteoarthritis (OA) is a common clinical disease that has a long process from early inflammation in the joint to the wear and tear of the cartilage layer and the formation of subchondral osteophytes, eventually leading to the failure of the joint to carry out daily movements and perform daily functions [1, 2]

  • The results of this study showed that the functions of 31 circRNAs were mainly focused on molecular function (MF), including protein kinase activity and glycosaminoglycan binding; cellular component (CC) were proteinaceous ECM, platelet α granule, extracellular matrix (ECM), cellular exosome, and endoplasmic reticulum membrane; biological process (BP) included peptidyl-serine phosphorylation, ECM organization, and cell adhesion (Figure 4)

  • Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis showed that circRNAs are enriched in PI3K/AKT, human papillomavirus infection (HPI), focal adhesion (FA), and other seven pathways (Figure 5), and VWF and COL6A3 were involved in 4/7 pathways (Table 4)

Read more

Summary

Objective

Provide a reference to elucidate the mechanism of circRNAs regulating osteoarthritis (OA) and the clinical treatment. Articles about circRNAs (hsa-circ) and osteoarthritis in the recent 5 years have been reviewed and the differential expression and regulatory effect of circRNAs in OA deduced. Based on these conclusions and Protein-Protein Interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the acquired circRNAs, the potential functions and interactions of circRNAs in OA and the involved signaling pathways are discussed. We found that most articles about circRNAs regulating OA in the recent 5 years focused on the mechanism, especially the absorption effect of circ-miRNA as sponges in the recent 2 years, while most of the articles about their functions addressed ECM and PI3K, AKT, and mTOR signaling pathways. Future studies might focus on the functions of circRNAs, and circRNA VWF, with preferable functions, interactions, and involvement, can be used as a biological indicator to detect OA in clinical practice

Introduction
Material and Methods
Criteria
Results
Discussion
Conflicts of Interest
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.