Abstract

Acid sphingomyelinase (ASMase) has been proposed to mediate lipopolysaccharide (LPS) signaling in various cell types. This study shows that ASMase is a negative regulator of LPS-induced tumor necrosis factor alpha (TNFalpha) secretion in macrophages. ASMase-deficient (asm(-/-)) mice and isolated peritoneal macrophages produce severalfold more TNFalpha than their wild-type (asm(+/+)) counterparts when stimulated with LPS, whereas the addition of exogenous ceramides or sphingomyelinase reduces the differences. The underlying mechanism for these effects is not transcriptional but post-translational. The TNFalpha-converting enzyme (TACE) catalyzes the maturation of the 26-kDa precursor (pro-TNFalpha) to an active 17-kDa form (soluble (s)TNFalpha). In mouse peritoneal macrophages, the activity of TACE was the rate-limiting factor regulating TNFalpha production. A substantial portion of the translated pro-TNFalpha was not processed to sTNFalpha; instead, it was rapidly internalized and degraded in the lysosomes. TACE activity was 2-3-fold higher in asm(-/-) macrophages as compared with asm(+/+) macrophages and was suppressed when cells were treated with exogenous ceramide and sphingomyelinase. Indirect immunofluorescence analyses revealed distinct TNFalpha-positive structures in the close vicinity of the plasma membrane in asm(-/-) but not in asm(+/+) macrophages. asm(-/-) cells also had a higher number of early endosomal antigen 1-positive early endosomes. Experiments that involved inhibitors of TACE, endocytosis, and lysosomal proteolysis suggest that in the asm(-/-) cells a significant portion of pro-TNFalpha was sequestered within the early endosomes, and instead of undergoing lysosomal proteolysis, it was recycled to the plasma membrane and processed to sTNFalpha.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.