Abstract

Perovskite titanates with nominal stoichiometry ABO3+δ often exhibit quite interesting properties, but their structural characterization is not always rigorous. Herein, we demonstrate how excess oxygen can be incorporated in a titanate perovskite-based lattice. A new family of layered perovskites La4Srn–4TinO3n+2 has been investigated by means of X-ray diffraction, neutron diffraction, transmission electron microscopy, thermogravimetric analysis, and density and magnetic measurements. Such layered perovskites are known to be able to accommodate extra oxygen beyond the parental ABO3 perovskite in crystallographic shears. The structure evolves with increasing n. Firstly, the perovskite blocks become more extensive and the oxygen intergrowth layers move further apart; then the spacing between the intergrowth layers increases further and their repetition becomes more sporadic. Finally, the layered structure is lost for the n = 12 member (La2Sr4Ti6O19–δ). In this structure, excess oxygen is accommodated within the perovskite framework in randomly distributed short-range linear defects. These defects become more dilute as the cubic perovskite, that is, n = ∞, composition is approached.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.