Abstract

The rate of oxidation of L-[1-14C]leucine to 14CO2 by isolated rat hepatocytes is increased by pyruvate and dichloroacetate. This effect is specific for L-leucine, not being observed for L-valine, L-isoleucine, or D-leucine. Transamination, the rate-limiting step of L-leucine catabolism in the liver, is the site of stimulation, because uptake of L-leucine by the cells and the oxidation of its transamination product, alpha-ketoisocaproate, are not increased. Measurement of steady state levels of alpha-ketoisocaproate indicate that both pyruvate and dichloroacetate promote the transamination of L-leucine, thereby increasing the availability of substrate for decarboxylation by the alpha-ketoisocaproate dehydrogenase complex (EC 1.2.4.3). Pyruvate stimulation of transamination is secondary to the provision of keto acid acceptors for the amino group of L-leucine. The mechanism of the effect of dichloroacetate remains unknown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.