Abstract

Yttrium oxide was chosen as the secondary emission substance based on calculation results through first principle theory method. A new kind of pressed yttrium oxide-tungsten matrix dispenser cathodes are prepared by a sol–gel method combined with high temperature sintering in dry hydrogen atmosphere. The results show that the growth of the grains is hampered by the pinning effect of Y2O3 distributing uniformly between the tungsten particles, resulting in the formation of small grain size. It is found that Y2O3 improves the secondary electron emission property, i.e., the secondary emission yield increases with the increase of Y2O3 content in the samples. The maximum secondary emission yield δmax of the cathode with 15% amount of Y2O3 can reach 2.92. Furthermore, the cathode shows a certain thermionic emission performance. The zero field emission current density J0 of 4.18A/cm2 has reached at 1050 °Cb for this kind of cathode after being activated at 1200 °Cb, which are much higher than that of rare earth oxide doped molybdenum (REO-Mo) cathode reported in the previous work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.