Abstract

The minimum size of radiocarbon samples for which reliable results can be obtained in an accelerator mass spectrometry (AMS) measurement is in many cases limited by carbon contamination introduced during sample preparation (i.e. all physical and chemical steps to which samples were subjected, starting from sampling). Efforts to reduce the sample size limit down to a few μg carbon require comprehensive systematic investigations to assess the amount of contamination and the process yields. We are introducing additional methods to speed up this process and to obtain more reliable results. A residual gas analyzer (RGA) is used to study combustion and graphitization reactions. We could optimize the reaction process at small CO2 pressures and identify detrimental side reactions. Knowing the composition of the residual gas in a graphitization process allows a reliable judgment on the completeness of the reaction. Further, we use isotopically enriched 13C (≥98% 13C) as a test material to determine contamination levels. This offers significant advantages: 1) The measurement of 12C/13C in CO2 is possible on-line with the RGA, which significantly reduces turnaround times compared to AMS measurements; 2) Both the reaction yield and the amount of contamination can be determined from a single test sample.The first applications of isotopically enriched 13C and the RGA have revealed that our prototype setup has room for improvements via better hardware; however, significant improvements of our sample processing procedures were achieved, eventually arriving at an overall contamination level of 0.12 to 0.15 μg C during sample preparation (i.e. freeze-drying, combustion, and graphitization) of μg-sized samples in aqueous solution, with above 50% yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.