Abstract

AbstractThe neurosecretory system and retrocerebral endocrine glands of Nezara viridula Linn. have been described on the basis of in situ preparations and histological sections employing the paraldehyde fuchsin (PF) and performic acid‐victoria blue (PAVB) techniques.In the brain of N. viridula, there are two medial groups–each consisting of five neurosecretory cells which belong to A‐type. The lateral neurosecretory cells are absent. The axons of the two groups of medial neurosecretory cells (MNC) compose the two bundles of neurosecretory pathways (NSP) that decussate in the anterodorsal part of the protocerebrum. The two pathways, after the cross‐over, run deep into the protocerebrum and deutocerebrum and emerge as NCC‐I from the tritocerebrum. The nervi corporis cardiaci‐I (NCC‐I) of each side which are heavily loaded with NSM terminate in the aorta wall. Thus, the neurosecretory material (NSM), elaborated in the medial neurosecretory cells of the brain, is stored in the aortic wall and nervi corporis cardiaci‐I (NCC‐I). The NCC‐II are very short nerves that originate from the tritocerebrum and terminate in the corpora cardiaca (CC) of their side. Below the aorta, but dorsal to the oesophagus, lie two oval or spherical corpora cardiaca. A corpus allatum (CA) lies posterior to the corpora cardiaca (CC). The corpora cardiaca do not contain NSM; only the intrinsic secretion of their cells has been occasionally observed which stains orange or green with PF staining method. The corpus allatum sometimes exhibits PF positive granules of cerebral origin. A new connection between the corpus allatum and aorta has been recorded. The suboesophageal ganglion contains two neurosecretory cells of A‐type which, in structure and staining behaviour, are similar to the medial neurosecretory cells of the brain. The course and termination of axons of suboesophageal ganglion neurosecretory cells, and the storage organ for the secretion of these cells have been reported. It is suggested that the aortic wall and NCC‐I axons function as neurohaemal organ for cerebral and suboesophageal secretions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call