Abstract

The use of off gas analysis and redox potential measurement has shown that bioleaching involves at least three important sub-processes. The primary attack of the sulphide mineral is a chemical ferric leach. The role of the bacteria is to convert the iron from the ferrous to the ferric form, thereby maintaining a high redox potential. The kinetics of bacterial ferrous iron oxidation by Thiobacillus ferrooxidans and a Leptospirillum-like bacterium, and the chemical ferric leach kinetics of pyrite have both been described as functions of the ferric/ferrous-iron ratio. Thus, the chemical ferric leach of the mineral and the bacterial oxidation of the ferrous iron are linked by the redox potential, and are in equilibrium when the rate of iron turnover between the mineral and the bacteria is balanced. These rate equations have been used to predict the steady state redox potential and sulfide mineral conversion in a continuous bioleach reactor. The model successfully predicts laboratory data and is being tested against data from pilot-plant and full-scale bioleach systems. Furthermore, the model predicts which bacterial species will predominate and which mineral will be preferentially leached under specific operating conditions. Enzyme restriction analysis has shown that in pyrite-arsenopyrite bioleach reactors the dominant iron oxidizer is L. ferrooxidans, which is in agreement with the predictions of the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.