Abstract

AbstractThe course and kinetics of nonisothermal bulk polymerization of multifunctional acrylates were studied by dynamic differential scanning calorimetry (DSC). Measurements were carried out for four straight‐chain monomers, diethylene glycol diacrylate (DEGDA), triethylene glycol diacrylate (TEGDA), tetraethylene glycol diacrylate (TTGDA), and poly(ethylene glycol)diacrylate (PEGDA) (mol. wt. 600), to study the effect of the backbone chain length, atmosphere, and type of initiator on the crosslinking kinetics. 4,4′‐Azobis(4‐cyanovaleric acid) (1.0%, w/w) was used as a free‐radical initiator. From the dynamic scanning of polymerization of DEGDA at five heating rates (2–30°C/min), the average heat of polymerization (ΔHp) was found to be 524.2 J/g. An activation energy of 108.8 kJ/mol and preexponential factor 5.34 × 1012 s−1 were obtained from the Arrhenius plot, In dα/dt. The rate of polymerization was found manyfold greater at 20–60% conversion than at the initial stage (2–8% conversion). Polymerization was studied under both nitrogen and air atmosphere. The results corresponded well with the theory of oxygen inhibition. Different types of initiators, e.g., 4,4′‐azobis(4‐cyanovaleric acid) (ABCVA), 2,2′‐azobisisobutyronitrile (AIBN), and benzoyl peroxide (BPO) were used for polymerization and ABCVA was found to be the most efficient among all. © 1995 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.