Abstract

An electrochemical investigation on the interaction of acid chrome blue K (ACBK) with protein on the mercury electrode with different electrochemical methods such as cyclic voltammetry and linear sweep voltammetry was reported in this paper. In pH 3.0 Britton–Robinson (B–R) buffer solution, ACBK has an irrevisible voltammetric reductive peak at − 0.23 V (vs. SCE). The addition of human serum albumin (HSA) into the ACBK solution resulted in the decrease of reductive peak currents without the change of the peak potential and no new peaks appeared on the cyclic voltammogram. In the absence and presence of HSA, the electrochemical parameters such as the formal potential E 0, the electrode reaction standard rate constant k s and the charge transfer coefficient α of the interaction system were calculated and the results showed that there were no significant changes between each other. Thus, the interaction of ACBK with protein forms an electro-inactive supramolecular bio-complex, which induces the decrease of the free concentration of ACBK in the reaction solution, and the decrease of the reductive peak current of ACBK. The binding constant and the binding ratio are calculated as 1.29 × 10 8 and 1:2, respectively, and the interaction mechanism is discussed. Based on the binding reaction, this new electrochemical method is further applied to the determination of HSA with the linear range from 3.0–20.0 mg/L and the linear regression equation as Δ Ipʺ(nA) = 10.08 + 19.90 C (mg/L). This method was further applied to determinate the content of protein in the healthy human serum samples with the results in good agreement with the traditional Coomassie brilliant blue G-250 spectrophotometric method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.