Abstract
The widespread use of triazole fungicides in agricultural production poses a potential risk to human health. This study investigates the interaction of five triazole fungicides, i.e., tebuconazole, triticonazole, hexaconazole, penconazole, and uniconazole with human renal transporters, including OAT1, OAT3, OCT2, OCTN1, OCTN2, MATE1, MATE2-K, MRP2, MDR1, and BCRP, using transgenic cell models. For uptake transporters, triticonazole was the substrate of OAT1 and OAT3 and the inhibitor of OCT2. Tebuconazole and penconazole inhibited OCTN2 (100 μM), while tebuconazole, triticonazole, hexaconazole, penconazole, and uniconazole inhibited MATE1 (100 μM). Tebuconazole and hexaconazole inhibited MATE2-K (100 μM). All five triazole fungicides were not substrates or strong inhibitors of MRP2, MDR1, and BCRP efflux transporters. Penconazole inhibited OCT2 with IC50 = 1.12 μM. Penconazole and uniconazole inhibited MATE1 with IC50 = 0.94 μM and 0.87 μM. Tebuconazole and hexaconazole inhibited MATE2-K with IC50 = 0.96 μM and 1.04 μM, indicating that triazole fungicides may inhibit renal drug transporter activity at low concentrations. Triticonazole was transported by OAT1 and OAT3, and the Km values of triticonazole were 5.81 ± 1.75 and 47.35 ± 14.27, respectively. Tebuconazole and uniconazole were transported by OAT3, and the Km values of tebuconazole and uniconazole were 30.28 ± 7.18 and 87.61 ± 31.70, respectively, which may induce nephrotoxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.