Abstract

The kinetics of inactivation of Leuconostoc mesenteroides NRRL B-512F dextransucrase by o-phthalaldehyde showed that the reaction followed pseudo-first order reaction. The loss of enzyme activity was concomitant with an increase in fluorescence at 417 nm indicating that the inhibition involved the reaction of an epsilon-amino and a thiol group of the enzyme leading to the formation of an isoindole derivative. The stoichiometry of inactivation showed that one isoindole derivative was formed per enzyme molecule. The substrates sucrose and glucose provided protection against o-phthalaldehyde inactivation which was also corroborated by fluorescence studies. Dextransucrase was not inactivated by 5,5'-dithiobis(2-nitrobenzoic acid), showing that the cysteine present in close proximity to the lysine is not essential for enzyme activity. Denaturation of dextransucrase by urea or heat treatment prior to o-phthalaldehyde addition resulted in a decrease of fluorescence intensity indicating that the native conformation of the enzyme is essential for isoindole derivative formation. These results established that a lysine residue is present at the active site and is essential for the activity of dextransucrase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.