Abstract

The portion of the Castilleja haustorium within the host, the endophyte, was examined at the light-and electron-microscopic levels. The endophyte consists of a stalk of lipid-containing cells and digitate cells at its tip. Vessels run the length of the endophyte. There is a harmonious meshing between host cortical cells and those of the endophyte flank, suggesting that penetration is accomplished, in part, by cell dissolution. Crushing of cells also occurs during endophyte invasion as host phloem tissues are severely buckled and cell walls are greatly folded. Some features of digitate cells include dense cytoplasm, an abundance of endoplasmic reticulum, lateral walls that are thickened as well as those on the side adjacent to the host, and an ability to conform to the contours of host tissues. Often digitate cells are divided by very thin walls that are hardly visible under the light microscope. It is suggested that the thick cell walls may function as "free space" in the absorption of materials from the host. Within the endophyte, vessels differentiate and may contain either a finely granular, dark-staining material or a more coarsely granular, light-staining material. The particles of the latter have irregular shapes. Although granular materials are thus carried by some vessels, cells resembling the structurally intermediate "phloeotracheids" were not seen. Connections through the cell wall were not observed between parasite and host; however, within the endophyte plasmodesmata were highly branched and often contained median nodules. Transfer-like cells which have irregularly thickened walls occurred in the endophyte. Host tissues next to digitate cells appeared to be in a degraded state. Invaginations of the plasmalemma were common and small flattened vesicles were formed in some host cells from the disrupted tonoplast. In several instances, the cytoplasm had receded from the host cell wall and a "beaded" material was present in both vacuoles and large vesicles. The host cell wall at times had a very loose fibrillar appearance. Some host tracheids were occluded with a dense and dark-staining material. The xylem strands of the parasite are connected to the host xylem either by cell wall dissolution or by actual penetration of a digitate cell into a host xylary cell. The penetrating cell subsequently differentiates into a vessel member. A summary and general discussion are given to relate the two portions of the haustorium, the upper haustorium and the endophyte. The mass of new information gained in this study leads us to encourage the application of plastic embedding and sectioning techniques to further light-microscope studies on haustoria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call