Abstract

Abstract The extraction and stripping behavior of various metal ions present in the fast reactor simulated high-level liquid waste (FR-SHLLW) was studied using a solvent phase composed of a neutral extractant, N,N,-didodecyl-N′,N′-dioctyl-3-oxapentane-1,5-diamide (D3DODGA) and an acidic extractant, di-2-ethylhexyl diglycolamic acid (HDEHDGA) in n-dodecane (n-DD). The third phase formation behavior of the solvent formulation D3DODGA + HDEHDGA/n-DD, was studied when it was contacted with FR-SHLLW, and the concentration of neutral and acidic extractant needed to avoid the third phase formation was optimized. The distribution ratio of various metal ions present in FR-SHLLW was measured in a solution of 0.1 M D3DODGA + 0.2 M HDEHDGA/n-DD. The extraction of Am(III) was accompanied by the co-extraction of lanthanides and unwanted metal ions such as Zr(IV), Y(III), and Pd(II). A procedure was developed to minimize the extraction of unwanted metal ions by using aqueous soluble complexing agents in FR-SHLLW. Based on those results, the counter-current mixer-settler run was performed in a 20-stage mixer-settler. Quantitative extraction of Am(III), Ln(III), Y(III), and Sr(II) in 0.1 M D3DODGA + 0.2 M HDEHDGA/n-DD was observed. The recovery of Am(III) from the loaded organic phase was carried out by the optimized aqueous formulation composed of 0.01 M diethylenetriaminepentaacetic acid (DTPA) + 0.5 M citric acid (CA) at pH 1.5. The stripping of Am(III) was accompanied by co-stripping of some early lanthanides. However the later lanthanides (Eu(III) and beyond) were not back extracted to Am(III) product. Therefore, the studies foresee the possibility of intra-lanthanides as well as lanthanide-actinide separation in a single-processing cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.