Abstract

In-cylinder gas motion is the essential parameter that enhances fuel-air mixing and increases the combustion rate and governs the performance and emission of the engine. It also has significant impact on heat transfer. Angling the intake port into various angles is the one of the method to enhance swirl motion inside the combustion chamber. In this project, direct port is converted into helical port to analyze the air motion inside the engine cylinder. In order to analyze the effect of helical port design the various flow parameters such as swirl ratio, flow coefficient, and turbulent kinetic energy are calculated. By angling the intake port, swirl generation during suction stroke is comparatively larger than direct port. A commercial CFD software STAR-CCM is used to analyze the in-cylinder air motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.