Abstract

Biomass, the fibrous material derived from plant cell walls, is a potentially clean and renewable nonfood feedstock for liquid fuel and chemical production in future biorefineries. The capability of ionic liquids to act as selective solvents and catalysts for biomass processing has already been proven. Thus, they are considered as an alternative to conventional solvents. Nevertheless, phase equilibria with biomass derived compounds is still lacking in the literature. To overcome the lack of experimental data on phase equilibria of biomass carbohydrates in ionic liquids, the solubility of d-glucose in four ionic liquids was measured within a temperature range from 283 to 373 K. Solubility data were successfully correlated with local composition thermodynamic models such as NRTL and UNIQUAC. In this work, the possibility of extracting glucose from these ionic liquids using the antisolvent method has been also evaluated. The parameters affecting the extraction process are the ionic liquid type, ethanol/ionic liquid ratio, temperature, water content, and time. Results indicate that ethanol can be successfully used as an antisolvent to separate glucose from ionic liquids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.