Abstract

The use of microorganisms or isolated enzymes in synthetic routes has been extensively used by industry and academic research. A great advantage of biotransformation in a synthetic route is highly regio- and enatiosselective control, which can be achieved through microbial catalyzed reaction. Biotransformation is one of the most efficient methods in a production of high purity optical compounds and development of efficient routes for target molecules. Biotransformation by Mucor ramosissimus of enedione 1 gave the keto-alcohol (-)-2 with enantiomeric excess (ee)>99,9% (determined by 1 H NMR with [(+)-Eu(hfc)] 3 ) and their epimer (-)-3 . Determination of the absolute configuration of epimer (-)-3 was accomplished by controlled reaction and measuring of optical rotation (scheme 1). The fungus M. ramosissimus is a promising species to perform desymmetrization of diketones with high enantioselectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.