Abstract

Degradation of 14C-ring labeled atrazine (2-choloro-4-(ethylamino)-6-(isopropylamino)-s-triazine) by bacterial populations from soil, waters and activated sludges was investigated and compared with non-biological decomposition in sterile solutions. Within two weeks, 0.6% Cl-deethyl- and 0.1% Cl-deisopropylatrazine had been formed in sterile 0.02 M phosphate buffer, pH 7.2. In biodegradation studies, bacterial populations were enriched and incubated in media containing atrazine and high or low levels of nutrients. Nutrient supply had a strong effect on the fate of atrazine in bacterial cultures, whereas the origin of bacteria was of minor importance. In 31 of 33 mixed populations investigated, the herbicide was largely converted to unidentified compounds. Incubation with high levels of nutrients resulted in 17% to 57% of these compounds being constant after one and two weeks of incubation. In parallel experiments with low nutrient supply, the compounds were present in amounts of 7% to 57% after one week. The proportions of the unidentified compounds dropped within the second week of incubation, while atrazine reappeared correspondingly. The amounts of dealkylated metabolites generally did not exceed those of sterile solutions. The results indicate that atrazine is not degraded by bacteria but bound, thus simulating biodegradation. Evidence is presented that physicochemical decomposition of the herbicide is more significant than microbial degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call