Abstract

The defect structure for Cu(2+) in CdSe nanocrystals is theoretically studied by analyzing the spin Hamiltonian parameters of this impurity center. This center is ascribed to Cu(2+) occupying the octahedral interstitial site, rather than the tetrahedral substitutional Cd(2+) site proposed by previous work. The Cu(2+) center exhibits slight tetragonal elongation distortion (characterized by the elongation parameter rho approximately 0.03) due to the Jahn-Teller effect. The theoretical spin Hamiltonian parameters and optical transition show good agreement with the experimental data. The above unusual defect structure (occupation and symmetry) for Cu(2+) in CdSe nanocrystals is discussed, as compared with the conventional trigonally distorted tetrahedral Cu(2+) centers in bulk II-VI semiconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.