Abstract

The impedance spectra of Li-ion batteries as a function of the number of charge–discharge cycles have been measured to study the cycle life of the commercial Li-ion battery (prismatic Sanyo UF653467) during cycling at 1 C charge–discharge rate. The individual electrodes in the batteries have been examined using XRD, transmission electron microscopy (TEM) and SEM. The results show that the Nyquist plots of commercial lithium-ion batteries are comprised of an inductive tail at high frequency followed by two semicircles at medium and low frequencies. The size of the semicircles at low frequency increase during cycling due to the increase in interfacial resistances of both cathode and anode. Thus, it may be used to predict the cycle life of the battery. XRD, TEM and SEM studies of the individual electrodes show that the cation disorder, microcracks of the LiCoO 2 particles in the cathode and the increase in thickness of the passive film on the anode due to the reduction of the electrolyte are linked to the capacity fade of the battery during cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.