Abstract

1. An overview of studies on the decapod crustacean cardiac ganglion is given emphasizing contributions to questions of general interest in cellular neurophysiology. 2. John Welsh, in 1951, introduced this 9-celled, semi-autonomous ganglion as a preparation offering physiologists unique experimental possibilities. 3. It exhibits remarkable reliability and stability in rhythmic pattern generation. The neurons show endogenous burst-forming capability mediated by "driver potentials". 4. These regenerative, Ca-mediated potentials are restricted to the soma, while impulse-generating membrane is segregated to the distal axon. 5. Thus, voltage-clamp analysis of the ionic currents underlying the burst-forming potentials is possible by isolating the soma with a ligature. 6. The isolated ganglion is spontaneously active, but the normal mechanism of pacemaking remains to be clarified, including the possible contribution of stretch-sensitive dendrites. 7. The activity of the ganglion is subject to modulation by neurohumors. These include the transmitter at intraganglionic synapses, transmitters of the pair of inhibitory and the two pairs of acceleratory fibers, and neurohormones released from the pericardial organs. The transmitters are not established. 8. Effects on the ganglion of substances isolated from the pericardial organs have been described. 9. These include 5-hydroxytryptamine, dopamine, octopamine, and two peptides. 10. One of these, proctolin, produces a long-lasting sequence of effects. 11. The work continues to raise new questions for which the ganglion offers excellent research material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call