Abstract

The effects of varying Cr and Mo concentrations on the pitting corrosion resistance of super austenitic stainless steels in Cl− solutions were investigated using a combination of immersion experiments, electrochemical measurements, X-ray photoelectron spectroscopy, and first-principles computational simulations. The surface characteristics, impedance, and defect concentration of the passive film were changed, and this eventually resulted in a decrease in the number of pitting pits. Due to a decrease in active sites within the passive film, a delayed beginning of pitting, and the combined effect of MoO42− inhibitors, it was discovered that an increasing Mo concentration slows the rate of pitting extension, resulting in reduced maximum pitting area and depth. Additionally, Mo increased the adsorption energy of nearby atoms, whereas Cr raised the adsorption energy of itself. Interestingly, compared with individual doping, co-doping of Cr and Mo increased work function and adsorption energy, indicating a synergistic impact in enhancing resistance to Cl− corrosion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call