Abstract

Studies from several laboratories have demonstrated the existence of at least three separable forms of the hepatic enzyme, tyrosine aminotransferase. The significance of these separable forms of the enzyme isolated in vitro for the nature and regulation of the enzyme in vivo has been the subject of some controversy. The studies reported in this paper demonstrate the existence of a heat-labile, pH- and temperature-dependent, nondialyzable component associated predominantly with the lysosomal and mitochondrial fraction of rat liver which catalyzes the conversion of form II to forms III and IV of the enzyme. The activity of this conversion factor is not significantly affected by F −, molybdate ions, or two inhibitors of proteases. On the other hand, the cyanate ion completely inhibits the conversion of form II to forms III and IV of tyrosine aminotransferase, as do iodoacetate and oxidized glutathione. p-Chloromercuribenzoate also markedly inhibits the conversion. Kinetic studies suggest that the shift from one form to another follows the pathway: II to III to IV. Titration of the available sulfhydryl groups of the three forms of the enzyme demonstrates that form II possesses between 16 and 17 titratable SH groups per mole, while forms III and IV possess 15 and 13 or 14, respectively. The possible catalytic mechanism by which the conversion of the multiple forms of tyrosine aminotransferase is accomplished is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.