Abstract

For high efficiency and long durability of proton exchange membrane fuel cells (PEMFCs), polymer electrolyte membranes should be kept wet. Reactant gases should be humidified on this account. For the humidification, the PEMFC system uses an external or internal humidifier as a part of balance of plants (BOPs). However, external humidifiers have many disadvantages such as parasitic power loss, system complexity, high cost and bulky volume. As such, efforts have been made to remove the external humidifier or replace it with an advanced humidifier. In this work, to remove a humidifier, humidification by exhaust gas recirculation is investigated by theoretical analysis and experiments with 5-cell stack of an active area 250 cm2. In the theoretical analysis, species conservation equations and energy conservation equation are solved to obtain the O2 concentration, stoichiometric ratio, humidity ratio, temperature, amount of condensed water and so on. With the theoretical results, experiments with 5-cell, 250 cm2 fuel cell stack were carried out in order to analyze the stack performance at the theoretical conditions of the cathode process stream of exhaust gas recirculation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.