Abstract

In this study we have evaluated some of the potential mechanisms that may be responsible for the inefficiency with which resting B cells function as antigen-presenting cells (APC) and the mechanism by which that function is enhanced following treatment of B cells with neuraminidase. One mechanism that has been previously suggested is that glycosylation differences in Ia associated with different APC accounts for the different functional capacities of resting and activated B cells. It has been postulated that removal of sialic acid from resting B cell Ia results in a correction of its antigen-presenting defect. To study this possibility, we have used purified I-Ad from different B cell sources in a planar membrane system to present an immunogenic peptide of chicken ovalbumin (Ova) to an I-Ad-restricted Ova-specific T cell hybridoma. It was found that I-Ad isolated from resting B cells, B cell stimulatory factor 1 (BSF-1) or lipopolysaccharide and dextran sulfate-stimulated B cells, or A20 B lymphoma cells were all equivalent in their antigen-presenting capacity. Furthermore, removal of sialic acid from Ia did not enhance its capacity to serve as a restriction element. The mechanism by which neuraminidase treatment enhances B cell APC function was further investigated by studying the effect of sialic acid removal on a primary mixed leukocyte reaction (MLR). When allogeneic fixed B cells were used as stimulator cells it was found that neither resting nor BSF-1-stimulated B cells could induce a MLR. Following neuraminidase treatment, BSF-1-treated B cells, but not resting B cells, were capable of stimulating a MLR. However, a MLR was also stimulated by allogeneic BSF-1-treated B cells when the responder T cells, rather than the stimulator cells, were treated with neuraminidase. An enhancing effect similar to that obtained by neuraminidase treatment could be obtained by the addition of 2% polyethylene glycol to the MLR culture. These data suggest that the inability of BSF-1-stimulated cells to function efficiently as accessory cells in stimulating a primary MLR is due to their relative inability to interact physically with T cells, a deficiency that is overcome by neuraminidase treatment of either T or B cell populations or by the addition of polyethylene glycol to the culture. Although the reason for the failure of these same treatments to restore the accessory cell function of resting B cells is not known, some possible mechanisms are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.