Abstract

The air oxidation of As(III) oxides [(PhAsO) x and Ph2As-O-AsPh2] and thioesters [Ph-As(SPh)2, Ph2As-SPh Me-As(SPh)2, Me2As-SPh], in chloroform and in methanol was studied. The air oxidation in chloroform was faster probably because the solubility of dioxygen is greater than in methanol, and it is favored by the electron-withdrawing phenyl groups bound to As(III). The products obtained were the arsonic or arsinic acids and diphenyl disulfide. In one case, diphenyl disulfide and thiophenol were produced. The results can be rationalized by assuming first hydrolysis of the As(III) compounds to arsonous or arsinous acids followed by their oxidation to arsonic and arsinic acids, which should involve the binding of dioxygen to As(III). The other hypothesis assumes first the binding of dioxygen to As(III) of these oxides and thioesters followed by the decomposition of the adducts. The binding of the ground state dioxygen to As(III) may have biochemical implications for toxicity or chemotherapy of arsenic(III) compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call