Abstract

A detailed quantitative study of the kinetics of photochemical and non-photochemical quenching was achieved by a linear analysis of the yields of chlorophyll fluorescence and of oxygen evolution (as measured by the photoacoustic effect) by their responses to sinusoidal changes of actinic light. The results of this analysis were given in terms of the parameters of the kinetic phases obtained as a response to a step function change in the light intensity from a previous steady-state. Thus, it was possible to split the responses to a change in light intensity into six components which could be assigned to 6 time-constants (60 ms, 1.8 s, 2.5 s, 8 s, 150 s and 400 s). The comparison of the kinetics of responses induced by blue-light (approx. 400-500 nm) and by far-red (720 nm) light led to the assignment of the 1.8-s time-constant to the loading and discharge of the plastoquinone pool and of the 400-s time-constant to the state-transition controller which could be shown to be involved also in the adaptation to changes in light intensity and not only to changes in light quality (wavelength). The time-constant of 8 s, also occurring in 532-nm light-scattering was assigned to the "high-energy state" quenching (qE) of fluorescence. qE was paralleled by a decrease of the photoacoustic signal, demonstrating an "high-energy state" quenching of oxygen evolution as well. The 60-ms time-constant is suggested to be related to the redox state of the primary quinone acceptor of PS II, whereas the other two time-constants could not be identified. The calculation of the relative contributions of the photo-chemical and of the non-photochemical quenching in the individual components revealed that both quenching-mechanisms occur in all components except in the assumed fastest one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.