Abstract

The permeation characteristics of poly(vinylidene fluoride) membranes in the separation and concentration of poly(styrene sulphonic acid), from various aqueous solutions were investigated under various conditions. The rejection of the polymer from its aqueous solution was high, because electrostatic repulsions between the charges along polymer chains cause chain extension. When a salt, such as sodium chloride, and sulphuric acid were added to the aqueous solution and the pH was changed, the configuration of the poly(styrene sulphonic acid) molecules changed significantly with the added amounts of salt. The permeation characteristics were influenced markedly by the conformational changes of polymer molecules and the viscosities of permeating liquids. The rejections were dependent on the conformational changes: the permeation rates were mainly governed by the viscosities. Poly(vinylidene fluoride) membranes had much superior resistance to acid, i.e. even when immersed in concentrated sulphuric acid for 7 days, the permeation characteristics did not change at all. The membranes were also effective for the concentration of poly(styrene sulphonic acid) and the removal of sulphuric acid from aqueous mixtures since the concentration of these solutes were optimum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call