Abstract

A new soil isolate of Lactobacillus sp. grown in Yamanaka medium under submerged conditions showed the presence of d-glucose, d-xylose and d-ribose isomerases in washed cell suspension and cell free extracts. d-Xylose isomerase ( d-xylose ketol-isomerase, EC 5.3.1.5) and d-ribose isomerase ( d-ribose ketol-isomerase, EC 5.3.1.20) activities reached a maximum in 48 h of growth and then declined. d-Glucose isomerase ( d-glucose 6-phosphate isomerase, d-glucose-6-phosphate ketol-isomerase, EC 5.3.1.9) activity was maximum after 72 h and remained constant for ∼120 h of growth. d-Glucose isomerase activity increased with the increase in number of generations of culture and reached a maximum in 5–6 generations, whereas d-xylose and d-ribose isomerase activities decreased. The washed and starved whole cells could be heat treated and immobilized on the rough surface of glass rods or glass slides using acetone treatment. The heat treated immobilized cells showed only the presence of d-glucose isomerase activity and showed no d-xylose and d-ribose isomerase activities. d-Glucose isomerase activity of heat treated immobilized cells was inhibited less by sorbitol, mannitol, sodium arsenate, cysteine and calcium ions than the free d-glucose isomerase activity in fresh untreated washed whole cells and cell free extracts. EDTA inhibition had the same effect for both forms. Ca 2+ inhibition could be reversed by adding Mg 2+ ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.