Abstract

Poly(m-toluidine) (PmT), a derivative of polyaniline, has been prepared by chemical oxidation polymerization method. The synthesized PmT powder is blended with plasticized polyvinyl chloride (PVC) to achieve 20 μm thick self-supported films. These films were irradiated with 60 MeV Si5+ ions at three different fluences whose S e (electronic energy loss) value is found to be 1.988×103 KeV/μ m, an order of magnitude larger than 60 MeV C5+ (2.958×102 KeV/μ m). Fourier transform infrared (FTIR), X-ray diffraction (XRD) and ultraviolet-visible (UV) absorption studies of pre- and post-irradiated films of PmT–PVC blends were carried out to study the heavy ion irradiation effects on these polymer blends. An overall change in the structure of the polymer blend has been observed from FTIR studies. UV-visible spectra show a decrease in the optical band gap (E g) and an increase in cluster size with increasing fluence. An effort is made to compare these results with our earlier studies. We found that the variation in S e plays an important role in the structural and optical properties of PmT–PVC blends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call