Abstract

The stabilization of collagen using different small molecules have been explored for the development of biomaterials. One of the most studied molecules in biomaterials research is polydopamine (PDA) due to its ability to bind to different substrates that ranges from metal surface to collagen. Similarly, in leather tanning, chromium has been an extensively used metal ion as it binds strongly with collagen and enhances its stability. However, as per regulatory authority, the presence of chromium in leather has been restricted to minimum level. Here, we studied the application of chromium doped polydopamine (Cr-PDA) complex as collagen stabilizing agent. The preparation and characterization of Cr-PDA were confirmed using FE-SEM, DLS and FT-IR techniques. Cr-PDA did not alter the triple helical structure of collagen as evidenced from the CD spectral data. Cr-PDA delays the fibrillation in collagen compared to collagen or PDA alone. Calorimetric data shows the enhanced stability of collagen when treated with Cr-PDA compared to collagen control but lesser than PDA alone. Viscometry studies have shown that Cr-PDA reduces the viscosity of collagen compared to PDA or collagen alone. Contact angle studies showed that PDA and Cr-PDA imparts more hydrophobicity to collagen compared to control. Tensile strength studies showed that addition of Cr-PDA or PDA increases the tensile strength of the collagen fiber. The present study on stabilization of collagen using Cr-PDA might be helpful in development of crosslinking agents with eco-friendly approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call