Abstract

A single molecular junction is a nanoscale structure prepared by bridging a single molecule between macroscopic metal electrodes. It has attracted significant attention due to its unique structure and potential applications in ultra-small single molecular electronic devices. It has two metal-molecule interfaces, and thus the electronic structure of the molecule can be significantly modulated from its original one. The single molecular junction can be regarded as a new material that includes metal electrodes, a so-called “double interface material”. Therefore, we can expect unconventional physical and chemical properties. To develop a better understanding of the properties and functionalities of single molecular junctions, their atomic and electronic structures should be characterized. In this review, we describe the development of these characterization techniques, such as inelastic electron tunneling spectroscopy, surface-enhanced Raman scattering, as well as shot noise and thermopower measurements. We have also described some unique properties and functionalities of single molecular junctions, such as switching and diode properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.