Abstract

The transcellular movement of fucosylated glycoproteins has been studied in vitro using rat pancreatic lobules and cell fractionation procedures, and has been compared with the well established pathway of secretory proteins. Using tritiated leucine as pulse label for the latter, their translocation from the rough endoplasmatic reticulum into the Golgi complex and finally into zymogen granules could be followed. In the case of glycoproteins, 14C-fucose was incorporated mainly into the smooth microsomal fraction (representative of the Golgi complex) and only one third of this specific activity was transported into the zymogen granule fraction. A detailed analysis of this fraction after separation of the content of zymogen granules from their membranes revealed a predominant labeling of membrane glycoproteins by 14C-fucose. In comparison, leucine-labeled bulk proteins were found almost exclusively in the zymogen granule content fraction, with little radioactivity in the membrane fraction. The data indicate a concomitant synthesis of fucosylated glycoproteins destined in part for the zymogen granule membrane and to a greater amount associated with the smooth microsomal fraction. The results are discussed in the light of recent findings indicating that about 40% of the proteins in the zymogen granule membrane are made up of one major glycoprotein which could be involved in the mechanism of exocytosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call